拓撲空間: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>勝爲士
No edit summary
 
(No difference)

Latest revision as of 03:45, 9 July 2018

Template:當代數學 拓撲空間開集之所也,又譯佈局位相[1]開集者,無邊者也,疇人以為位相之本。拓撲空間之究,曰拓撲學

定義

拓撲空間者,集(A)也,且有幕集[2]子集,曰拓撲τ[3][4],其物曰開集。凡拓撲者,必以下是從:

  • 空間與空集,皆開集(「A,τ」)。
  • 取拓撲之子集,其物之並,亦開集也(「BτbBbτ」)。
  • 兩開集之交,亦開集也(「x,yτxyτ」)。

開集之補集,曰閉集。且有:

  • 空間與空集,皆閉集。
  • 取拓撲之子集,其物之交,亦閉集也。
  • 兩閉集之並,亦閉集也。

  • 集與空,成一拓撲。(「τ={A,}」)
  • 幕集,成一拓撲,曰離散拓撲。(「τ=P(A)」)
  • 度量空間,其開球之並,聚以成集,為空間之拓撲。
  • 取一實數,凡小於此者成一集,曰實數之開集。所得拓撲,為實數之序拓撲。(「τ={(,a)|a}{ϕ,}」)
  • 平面上一切圖形,合子拓撲,亦拓撲空間也。

  1. 台灣及日本之譯也。
  2. 子集之聚。
  3. topology之音譯,同于拓撲學。
  4. 若同一集合,不同拓撲,則以 (A,τ;<sub>1</sub>) 及 (A,τ;<sub>1</sub>)分辨之。

Template:拓撲術語